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The dispersion of marked fluid in turbulent 
shear flow 

By J. W. ELDER? 
Cavendish Laboratory, University of Cambridge 

(Received 24 September 1958) 

The analysis used by Taylor (1954) and based on the Reynolds analogy has been 
extended to describe the diffusion of marked fluid in the turbulent flow in an 
open channel. The coefficient of longitudinal diffusion arising from the combined 
action of turbulent lateral diffusion and convection by the mean flow is computed 
to be 5*9u,h, where h is the depth of fluid and u, the friction velocity. This is in 
agreement with experiments described herein. The lateral diffusion coefficient is 
found by experiment to be 0 . 2 3 . ~ ~  h, which is three times larger than the value 
obtained by the assumption of isotropy. The same analysis can be used to 
describe the longitudinal dispersion of discrete particles, both of zero buoyancy 
and of finite buoyancy, and comparison is made with observations by Batchelor, 
Binnie & Phillips (1955) and Binnie & Phillips (1958). 

1. Introduction 
This paper describes the application of the analysis used by Taylor (1  953,1954), 

in his work on diffusion in a circular pipe, to the case of turbulent flow in a wide 
channel with a free surface. For pipe flow, fluid particles are laterally restrained, 
whereas in such a channel this is not so. This extra degree of freedom allows 
a direct investigation of the validity of the assumptions made by Taylor in 
calculating the small contribution to the longitudinal dispersion due to longi- 
tudinal turbulent diffusion. The investigation is of some practical importance in 
connexion with the disposal of industrial wastes and particularly of radioactive 
material in estuaries and the ocean. 

At the present time there are two general approaches to the problem of 
diffusion. The first is the Lagrangian approach, an essentially kinematic formula- 
tion originally developed by Taylor (1922) in his theory of continuous move- 
ments. A recent survey has been given by Batchelor & Townsend (1956). The 
second method uses a Eulerian formulation and is the method used in the 
calculation below. This calculation is identical in principle to that used by Taylor 
(1954) for longitudinal diffusion in a pipe. It relies on the fact that the flow in 
a pipe or channel, under the action of a steady pressure gradient, is statistically 
steady and a function of a single co-ordinate y only. The dispersion process is 
controlled by the combined action of the longitudinal convection of fluid elements 
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at speeds depending on their lateral positions, and the lateral diffusion of fluid 
elements produced by turbulent mixing or molecular diffusion. 

Consider the dispersion of those fluid particles which are labelled at  some initial 
instant by injecting a dye or solute into the flow. The resulting mixture of fluid 
and dye is assumed to be of the same density p and kinematic viscosity v as the 
original fluid, and the dye particles are assumed to be of zero size. Particles of 
finite size are discussed in Ej 5. Thus we have a solute which is hydrodynamically 
indistinguishable from the channel fluid. For this reason the term self-diffusion 
has much to recommend it. The process of diffusion we study here is going on all 
the time in the flow. At the moment of injection we merely label some of the fluid 
particles so that we may see how fluid particles are being moved about. 

A conclusion of some importance immediately follows from the fact that the 
labelled fluid particles are hydrodynamically indistinguishable from a normal 
fluid particle. It is that the mean velocity of a marked particle in a pipe or 
a channel is the same as the discharge velocity; because the discharge velocity is 
the average particle velocity taken over all realizations of the flow. Alternatively, 
the result follows the fact that the probability of a particle passing through an 
element of area of a given flow cross-section is independent of the position of that 
element on the cross-section. The result was first given by Batchelor et al. (1955), 
who accurately confirmed it by experiments in a circular pipe. Further it is clear 
that the mean velocity of the centre of mass of a cloud of labelled particles is also 
equal to the discharge velocity. Since the cloud is made up of many fluid 
particles, we may expect in practice that even in a single realization (or experi- 
ment) the centre of mass will have a velocity very nearly equal to the discharge 
velocity. This was found to be so by Taylor (1954) in his experiments in a circular 
pipe and is further confirmed below for the flow in a channel. 

Having established the importance of the discharge velocity, it  is of interest to 
see how marked particles are dispersed relative to a point moving with the 
discharge velocity. Dr G. K. Batchelor pointed out (Taylor 1954) that the original 
considerations by Taylor for a particle whose velocity is a stationary random 
function of the time also applied to particles in the statistically steady flow in 
a pipe or channel. It follows that the mean-square of the fluctuation in (one 
component of) the position of a fluid particle after a time t is 

p ( t )  = 22112 1; (t - p )  R ( p )  dp, 

where u‘ is the fluctuation, about the mean, of the particle velocity, and R ( p )  is 
the correlation between u’(t) and u’(t+p). For t sufficiently large to make 
R ( p )  = 0 the relation becomes 

s-+ 2uT t som R ( p )  dp. 

If an effective diffusion coefficient for the longitudinal dispersion of solute 
exists, we must have an equation for the rate of change of mean solute concentra- 
tion of the form 

aslat = D,aZs/ap, 
36 Fluid Meoh. 6 
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where c is a position co-ordinate in the direction of mean flow, relative to  an 
origin moving with the mean velocity of a fluid particle. The solution corre- 
sponding to diffusion from an initial concentration at E = 0 is 

S =  ' exp ( - c2/4Dlt) (g = constant), 
2(nD1 t)& (3) 

for which the dispersion of solute is measured by 

/ ImS[2d[  = 2D1t. 

This expression has the same &dependence as ( 2 )  and suggests the existence of 

a diffusion coefficient ut2 R ( p )  dp. The existence of a diffusion coefficient would 

be proved if it could be shown that the probability distribution of the particle 
displacement was Gaussian, but such a proof would require a central limit 
theorem for a stationary continuous process. Although this theorem is not yet 
available there is widespread belief in its validity. The above analysis is therefore 
merely suggestive and at the present stage we rely on the experimental obser- 
vation that the probability distribution of the particle displacement is Gaussian. 

- !ow 

2. The longitudinal diffusion coefficient 
Consider the dispersion of a solute of neutral particles of concentration s gm/cm3 

of solvent in the steady flow in a channel. Solute is conserved, so that for an 
incompressible fluid with molecular diffusivity K ,  

DslDt = KV~S.  

For dispersion in a turbulent velocity field, write s = S + s', u = U + u', where 
S, U are mean values of concentration and velocity at a given position, and the 
fluctuation in velocity is u' = (u', d, w'). Expanding DslDt and averaging the 
resulting equation with respect to all realizations, 

DXIDt + V .  (uls') = K V ~ S ,  

where from now on D/Dt is the rate of change following the mean motion. Choose 
a co-ordinate system (2, y, z )  so that the x-co-ordinate line is parallel to the mean 
flow and the mean velocity is a function of y alone. For flow in an open channel of 
depth h, (2, y, x )  are Cartesian co-ordinates, whereas for the flow in a circular pipe 
of radius h they are cylindrical polars. Components in the directions of the three 
co-ordinate lines are given subscripts 1, 2, 3, respectively. 

It is convenient to define the three diffusivities el, e2, e3 by 
- 
U'S' = - el aslax, etc., 

so that in Cartesian co-ordinates 

For a flow in which the local mean velocity is V(y) the mean concentration S 
will also be a function of y. In  practice this variation is not of primary importance 
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because of the presence of the channel walls. It is the net diffusive and convective 
transport longitudinally (2-direction) and the diffusion laterally in the z-direction 
that is important. To describe this net longitudinal transport we search for 
a simple solution of the transport equation (4) from which to identify a diffusion 
coefficient. 

Let e = e2 + K be a given function of y .  Consider a distribution of concentration 
in which no lateral dispersion occurs so that as/az = 0. In  all cases, terms like 
a/ax make only a small contribution to the diffusion coefficient since the marked 
fluid is extended greatly in the x-direction, so that for the moment they may be 
neglected. From (4) therefore, 

where n = 0 in a two-dimensional channel, n = 1 in a circular pipe (Taylor's 
case), and y is measured from the free surface or the centre of the pipe. Since we 
are interested in dispersion about a point moving with the discharge velocity u, 
write 

DS as -as as _ -  - -+u-+u*--, 
Dt at a g  % 

where U = 
elements are rapidly extended in the x-direction, 

+ U* and 5 = x - a t .  Seek a solution of (5) for which, since fluid 

as -as 
at at -+u-= 0 

is a good approximation and the transport of S across a plane at 6 depends only 
on the small variation of S with y ;  in this case (5) becomes 

where w = y/h.  Now put S = P + Q, where aP/aw = 0, aP/a6 = constant, so that 
the total transport of P across a plane at f is zero. If further, following Taylor 
(1964) and subsequently justifying the procedure by the agreement with measure- 
ments, we assume aQ/ac = 0, equation (6) is then integrable and we find 

which satisfies asjaw = 0 on w = 0 , l .  

rate of transfer of solute across a section of area A at is 
If the longitudinal dispersion can also be described by a diffusion coefficient the 

The relation (7) then requires 

35-2 
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This expression applies to both laminar and turbulent flows, provided the time 
scale of the convective effect is much greater than the time scale of the diffusion 
of variations of S with y (Taylor 1954). It will also be shown in 5 5 to apply to 
particles of finite size provided U and e are replaced by their mean values over 
the cross-sectional area of the particle. 

3. Turbulent dispersion in an open channel 
At the present stage of research it is necessary to deduce the form of the ei by 

comparison with experiment. It is fairly well established that near a wall the 
transfer of momentum and mass are analogous. That is, 

This relation will be assumed to hold over the whole channel. For the flow in 
a channel or pipe in which the velocity field is a function of y only and is otherwise 
homogeneous, only one such relation (10) can be written down. Hence Reynolds 
analogy only allows us to calculate directly the longitudinal diffusion coefficient. 

For a pipe or channel the Reynolds equations for the mean flow can be inte- 
grated to give r = r,, w, where r is the stress in the fluid and 70 is the stress at the 
wall. The friction velocity u, is defined by (70/p)4. The velocity distribution 
satisfies the defect law 

and I u = u1-u7 f ( w )  

i7 = q-u,f ,  
where U, is the maximum velocity. Hence, by (10) and neglecting the molecular 
diffusion coefficient which is normally only about lo4 e2, 

e = hu, w/ f'. (12) 

The velocity distribution is specified by the function f ( w ) .  Taylor, in his 
calculation for dispersion in a pipe, used an empirical function based on experi- 
ment. For flow in an open channelf(w) is given closely by the logarithmic law of 
the wall 

where k = 0-41 is an absolute constant. 

integrations for D, can be performed to give 

kf(w)  = -log(l-w), (13) 

Hence D, is determined by (ll),  (12), (13) and (9) and for n = 0 the first two 

k3~,/hu, = S,l w-1(1- w) [log (1 - w)12dw. (14) 

The integral can be evaluated as a series of gamma functions to give a value 

2 2 n-3 = 0.4041, so that, on using k = 0.410, we have 
m 

n-2 
f), = 5*86h~ , .  

Turbulent diffusion in the x-direction 

So far we have neglected the contribution from the longitudinal turbulent 
diffusion by ignoring the term a/aqe, a8/ax). Taylor showed that the contribution 
was normally insignificant for laminar flow and even for turbulent flow was small. 
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He was able to make a reasonable estimate by assuming el = e, which is strictly 
true in isotropic turbulence. The additional diffusive transport is 

where D* is the diffusion coefficient due to the longitudinal turbulent diffusion. 
Hence 

D*/hu, = /olwdw/f' = lC/S = 0.068. 

The total longitudinal coefficient is thus (5.86 + 0.07) u,h = 5.93 u,h. Although 
the use of the Reynolds analogy by itself does not allow the lateral diffusion 
coefficient to be calculated, the above calculation for D* equally well evaluates, 
on the assumption of isotropy, the diffusion coefficient for lateral diffusion, D3. 
Notice that D, is linearly related to e,  whereas D,  is linearly related to l / e .  

4. Experimental results in an open channel 
The experimental arrangement 

The experimental investigation was performed in the 14-inch water flume of the 
Engineering Laboratory, Cambridge. The flume is described by Binnie, Davies & 
Orkney (1955). It was the only suitable channel available in Cambridge, and it 
severely restricted the range of the experiments. A roof tank was kept full by 
pumping water from a sink, placed beneath the outlet to the working section. 
Water from the tank ran through a valve into a reservoir behind the working 
section. The working section was 10 ft. long, rectangular in section and inclined a t  
0.046' to the horizontal. A sheet of white, self-adhesive plastic on which had been 
drawn a grid of black lines spaced 10 cm apart longitudinally and 5 cm apart 
transversely was stuck to the bottom of the working section. 

Turbulent flow did not occur naturally in the channel. Transition to turbulence 
was stimulated by placing two trip fences of 4mm height, 20cm apart, at  the 
beginning of the working section. Dye-injection tests revealed the efficiency of the 
device. Experiments were always performed more than 50 cm downstream of the 
trip fences. 

The possible experimental range was limited by three factors, the occurrence 
of waves near Froude number 0.7, the need for the turbulent boundary layer 
thickness of the flow near the wall to exceed the channel depth and the need for 
the flow to be turbulent. In  the flume used, the inclination was fixed and the weir 
height was set a t  zero, since otherwise the experimental range was even more 
restricted. Then Ul is an increasing function of h. In  the channel used here, 
U, = 23h0.s3 cm/sec, for h in cm. The mean velocity profile was determined with 
a total head tube and an inclined tube manometer. The profile was directly 
confirmed to be the same throughout the working section. All the profiles 
measured satisfied (13), except very near the wall and very near the surface, for 
h < 1-5cm. Thus the experiments were limited to a depth of 1.0 to 1-5cm, 
corresponding to a Reynolds number range of 2300 to 4500. The viscous sublayer 
caused departures from a logarithmic profile for w < 0.05. The friction velocity 
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determined from the experimental profiles agreed to within & 1 yo with values 
obtained by using a Reynolds number based on the so-called hydraulic mean 
depth and pipe data for the friction velocity (Nikuradse 1930). Over the range 
considered here 

The depth of flow was determined with a pricker gauge and the discharge velocity 
from the rate of discharge of water volume at the end of the channel. 

It was not permissible to use salt as the solute because the recirculated water 
was also used in other machines in the Laboratory, but permanganate solution is 
both harmless and intensely coloured. A stock solution was made up to a density 
1.033 g/cm3. Normally measurements encountered concentrations smaller by 
a factor 10-3 to Most of the measurements were made photographically. 
The working section was uniformly illuminated through the glass sides, photo- 
graphed from above on Ilford F P 3  film and developed in Ergo1 at 25OC to 
a Weston rating of 400. This allowed a short exposure time and fine grain. 
Conditions of illumination, exposure and development were carefully stan- 
dardized. Up to 80 strip photographs could be obtained on a single film. Each film 
was directly calibrated first by taking a phoco with no dye in the channel, and 
secondly with a series of poG, -filled with dye of known concentration, placed in 
the channel. 

The film blackness is described by the density d = -log,,T, where T is the 
proportion of light transmitted through the film. Over a considerable portion of 
the film characteristic there is a linear relation between d and the logarithm of the 
exposure. For a fixed exposure time the exposure is proportional to the intensity 
of illumination which the camera is viewing. Let the illumination with no dye in 
the channel be Io. Hence if the light scattering is small and the presence of dye 
does not alter Io, the observed illumination I is given by the usual relation 

I = 4exp (-BS,”.dY) , 

where s is the instantaneous concentration, ,8 is a constant related to the particular 
dye and the channel fluid, and it is assumed that the camera is at infinity in the 
y-direction. When the film is read we obtain Ad, the difference of density between 
that with dye in the flow and that without dye in the flow. Hence 

Ad cc C, where C = s d y .  

The relation between concentration C and density was linear up to Ad = 0.7, and 
although allowance was made for the non-linearity of this relation it was normally 
quite small. As the bulk of the observations had a density of less than 0.5, 
corrections due to non-linearity were not often used. The film was automatically 
read and plotted on the J.L.C. Walker Microdensitometerof the Medical Research 
Unit, Cavendish Laboratory. Normally the instrument was used with d = 0.5 
corresponding to the full scale of 19 cm. Plotting reproducibility was 0.2 mm. 

There is an important advantage of the photographic or fixed time method over 
probe or fixed distance method. If the diffusion rate is high, the concentration 

s,” 
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distribution may change sufficiently quickly while the cloud is passing over 
a probe to produce a long tail (Levenspiel & Smith 1957). Consider the simple 
example of injecting a small volume q of dye at unit concentration at  t = 0 into 
a pipe of unit cross-section in which the fluid has a discharge velocity 0. At 
a later time the concentration is given by (3). For observations at  x = X ,  S is not 
a Gaussian function of time unless Xz/Dt  = g X / D  is large. Even for u X / D  = 50- 
a tail twice as long as for a Gaussian curve is found. In  my experiments this 
corresponds to X + 40cm. Thus the use of the photographic method in this 
experiment is very desirable. 

The method of injecting the dye was designed to be as simple and reproducible 
as possible. For continuous injection a constant head of dye was maintained 
above a 1.0 mm circular jet. The wall of the jet was held 1 mm from the surface so 

10 cm 0 

FIGURE 1. Plan view of a drop of dye diffusing in the turbulent flow in an open channel. 
Distribution of concentration C,  normalized to have a maximum of 10. The flow is to the 
left. h = 1.43 cm, X / h  = 90. 

that the dye was injected normal to the surface at a rate between 0.1-0-4 cm3/sec. 
For the injection of drops a tube of 4mm internal diameter was attached to 
a small chamber ending in a rubber diaphragm. A 1 cm length of the tube was 
filled with dye and the tube end held 1 cm from the surface. When the diaphragm 
was tapped the dye was shot into the water in the channel. 

The e x p e r ~ ~ e ~ t a l  results 
If a drop of dye is injected and observed at some later time the drop appears as 
shown in figure 1. Lines of equal values of the concentration C, with a maximum 
of 10, are shown. The longitudinal dispersion is some 5 times the lateral dispersion. 
The curves are much more disturbed in front and a pronounced tail is seen behind. 

The mean position of the drop averaged over all realizations was directly 
verified to correspond to the position of a point moving with the discharge 
velocity to better than the experimental accuracy of 0.2 %. First, direct observa- 
tions were made with a stop-watch, giving an accuracy over several runs of 
f 0.1 sec in about 10sec. Secondly, at the same instant as the drop of dye was 
released, a stop-watch was started and also a piece of paper, 2 cm in diameter, was 
placed on the water surface at a known position some distance upstream of the 
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injection point. The piece of paper moves downstream with the surface velocity. 
At a later time a photograph was taken showing the stop-watch, the piece of paper 
and the diffusing drop. The shutter speed was 0.003sec. The accuracy is now 
determined by the measurements of a small length in a total length of 350 cm. 
No significant departure from the assumption could be found. 

2 1 0 1 2 
Z!f7 

the Gaussian curve of best fit. h = 1.34 cm, X / h  = 110, CT = standard deviation. 
FIGURE 2. Lateral concentration distribution across the middle of a diffusing drop and 

FIGURE 3. The lateral half-width as a function of dispersal time. h = 1.17 cm; 0, con- 
tinuous injection; e, drop injection. A ,  B, C correspond to w, = 0.5, -0.5, 0, where 
w, = W8+W8' 
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Figure 2 'shows a direct tracing of a microdensitometer traverse laterally 
across the middle of such a drop together with the Gaussian curve of best fit. The 
variations are directly due to variations of the concentration in the stream and 
are not due to grain on the film. The closeness of fit even in the tails is remarkable. 
Evidently the lateral dispersion can be described by a diffusion coefficient since 
a Gaussian distribution of concentration implies the existence of a diffusion 
coefficient. Figure 3 shows that the diffusion coefficient is independent of X for 
large X ,  where X is the mean position of the drop at any instant, this figure 
(based on 133 measurements both from drops and continuous injection) gives 
experimental values of W[ as a function of X, where 

W, = (lateral half-width)/h, 

,-\ 

S / h  

FIGURE 4. The mean longitudinal concentration distribution and the 95 yo limits along the 
centre line of 8 diffusing drop. h = 1.27 em, R = 3.41 x lo3. M ,  turbulent component; 
L, sublayer component. 

and the half-width is the distance between the points at which the concentration 
is half the maximumvalue. The points lie about a mean line Cfor which @ cc Xlh, 
corresponding to a lateral diffusion coefficient D3 = 0.328u,h, about three times 
the value given by (1 6). If we write W, = m3 + w,, the lines A,  B, C correspond to 
w, = 0, 4, - 4  respectively. The probability distribution of w,, P(w3), is sym- 
metrical about w, = 0, has a standard deviation of 0.204, and at w, = 0.05, 0.15, 
0.25, 0.35, 0-45, 0.60 has the values P(w3) = 0.119, 0.119, 0.109, 0.072, 0.050, 
0.018. P(w3) is much more rectangular than Gaussian. Notice that w, is inde- 
pendent of X so that the proportional scatter decreases as X-4. Even at  X / h  = 100 
the scatter is +_ 5 yo S.D. 

The longitudinal dispersion can also be described by a diffusion coefficient. 
From the photographs, taken a t  the same dispersion time, from 20 different drops, 
a mean and a 95 % concentration curve have been derived from traverses along 
the centre line of the drop, and are shown in figure 4. The 95 % curve defines the 
region outside which 5 yo of the points lie. The mean curve can be considered to 
consist of two components. The first and main component corresponds to solute 
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which is being carried in the fully turbulent part of the channel, whereas thesecond 
component arises from solute which is being carried near the wall in the viscous 

sub-layer. Since C = sdy, the totalobservedconceiitrationis thesum of the two 

concentrations. In  figure 4 an attempt has been made to separate the two 
components into a Gaussian curve, M ,  and another curve, L, by obtaining as good 
a fit as possible to the Gaussian curve over the forward portion of the experimental 
curve. From this Gaussian curve we obtain the experimental value 6.3 for 
Dl/hu,, about 8 yo higher than that given by the calculation. The measurements 
were made a t  a Reynolds number of 3.5 x 103. At such low Reynolds numbers it 
has already been noticed by Taylor (1954) that experimental values exceed those 
of calculation. The longitudinal half-width ( = W, h) is given in figure 5 as a func- 
tion of Xlh. For the larger values of X / h  the behaviour is similar to that of the 
lateral half-width. Writing W, = w, + w,, lines A ,  B, C in the figure correspond to 
w1 = 1, - 1,O.  The standard deviation of w, is 0.48, some 2.4 times larger than for 
the lateral scatter. 

Notice that (figure 4) the distribution of concentration in the sublayer com- 
ponent L quickly rises to a peak, at a distance of about 2(2D1t)* upstream of the 
centre of the drop, beyond which a long tail extends upstream. It is possible to 
obtain experimental values of the ratio of the length scales of the L and M dis- 
tributions by comparing the distances between the maxima and the upstream 
point a t  which the concentration C has dropped to half its maximum value. This 
ratio was found to lie between 5 and 7 for the data of figure 4. 

loh 

Departures from the simple theory due to the eddy structure 
The most novel feature of the observations presented above is the simple manner 
in which the half-width for each realization varied about the mean half-width. If 
W = + w, the probability distribution of w, P(w), is symmetrical about w = 0 
and independent of W or X .  For the lateral half-width the standard deviation of 
w, was 0-20. Thus 3 standard deviations extend over a width of 1.2h. The 
photographs show that the edge of the drop is distorted on a scale of order h. Thus 
we identify the spread of W as due to large eddy motions whose planes of circula- 
tion extend over an appreciable portion of the channel depth. These large eddies 
have been studied recently by Grant (1958). Similar remarks apply to the varia- 
tion in the longitudinal width. 

Taylor’s expression (1) can be written as 
- 
X 2  = A1t - B,; 

where, as t + co, 

A ,  -+ 2 3  som R ( p )  dp, 

with similar expressions relating the mean-square particle displacement in the 
y- and z-directions, Y2, Zz, to A,, B, and A,, B,. Using this relation to extrapolate 
the data of figures 3 and 5 shows that for lateral diffusion 1B31 < 0-05h2, and for 
longitudinal diffusion B, + 30h2. The small value of B, suggests tha t  the Lagran- 
gian correlation R,,(O, 0, t )  reverses sign while the large value of B, suggests that 

- _  
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Rll(t, 0 , O )  is of constant sign and very extensive. This behaviour is seen to be 
similar to that of the corresponding Eulerian correlations recently measured by 
Grant (1 958) in a boundary layer and suggests that the eddy motions responsible 
for these correlations persist for a considerable time. 

F~UURE 5. The longitudinal half-width rn a function of dispersal time. h 
A,  B, C corresponds to w, = 1, - 1, 0, where W, = vl + w,. 

= 1.27 om. 

Departures f rom the simple theory due to the wall subbyer 
It is already well known that the distribution of concentration is found experi- 
mentally to be asymmetric for small Reynolds number and small dispersal time. 
I have mentioned that this can occur due to observations being made at a fixed 
point, at small values of UXID. This spurious effect is not responsible for the long 
tails found by Taylor (1954) in experiments in which D X / D  100. Nor, of course, 
does it apply to the present method. But we have so far considered the channel 
as completely Wed by fully turbulent motion and have ignored the influence of 
the flow in the viscous sublayer next to the wall. This layer extends to 

y,/h + lOV/u,h = 50R-3, 

at which position the mean velocity is 

UJU, = ~OU,/U, = 2R-9. 

Subscripts s refer to the edge of the sublayer, R = Ulh/v and UJu, = 5RB. It 
seems reasonable to  assume that the flow field is sharply divided into laminar and 
turbulent regions by the sublayer surface at y = y8 and that marked particles can 
be exchanged between the two regions only by molecular diffusion. We have 
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already seen that a diffusion coefficient can be defined in the turbulent region. The 
same method can by employed to calculate the value of the diffusion coefficient D, 
appropriate to the linear velocity profile of the sublayer (Couette flow). It is 
easily shown from (9) that D, = y; u;/120K.  

Thus the two layers can both be described by diffusion equations, The diffusion 
in the turbulent layer occurs about a point moving with the discharge velocity 0, 
but the diffusion in the sublayer occurs about a point moving with the velocity 
&Us. While a diffusing drop is passing over a point in the sublayer, marked par- 
ticles enter the sublayer, and as the drop passes downstream these particles dis- 
perse, by longitudinal dispersion in the sublayer and by molecular diffusion back 
across the sublayer surface into a well-stirred region of nearly zero concentration. 

The derivation of the form of D, relies on the assumption that the rate of 
transport of solute in the y-direction, and in particular the transport of solute 
across the plane y = y, is small compared with the transport longitudinally 
(Taylor 1954). That this is normally the case is seen by noting that the time for 
a particle in the sublayer to move (by molecular diffusion) a distance y, in the 
y-direction is y:/2~, a time much larger than even the total dispersion time 
available in the present experiments. 

The assumption that the transport of solute across y, out of the sublayer has 
a much smaller effect on the distribution of solute in the sublayer, once the turbu- 
lent cloud has passed, than longitudinal dispersion in the sublayer, is supported 
by a comparison of the measured length scale of the tail with values computed 
from 0,. It is convenient to do this by comparing the length scale of the longi- 
tudinal dispersion in the turbulent layer, X,, with the length scale of that in the 
sublayer, X,. We have for the ratio of these length scales X,9/X, = (D,/D,)*; but 

so that X,/X = ~ . ~ R * ( v / K ) * .  

For the data of figure 4 we have R = 3-4 x lo3, K = 1-5 x 10-5cm2/sec and there- 
fore XJX, = 6.3. Experimental values lay between 5 and 7. This verification of 
the assumption of the independence of the two layers provides some justification 
of the analysis of the data of figure 4 into two components. 

The isotropic assumption 
The isotropic assumption involved in calculating the lateral diffusion is in error 
by a factor of 3. Particles disperse laterally some 70 yo faster than for the isotropic 
case. It was to be expected that the isotropic assumption produces too low a value 
of D,, since the lateral turbulent intensity always exceeds the vertical intensity 

contribution of the turbulent fluctuating motion to the longitudinal dispersion is 
also in error. Assume that this contribution equals the lateral diffusion coefficient, 
thusgiving D, = (5.86 + 0.23) hu, = 6*lhu,, withD, = 0*23u,h. Theexperimental 
value of D,, viz. 6-3hu7, about 3 % high, is in reasonable agreement with theory, 
despite unfortunately low values of the Reynolds number and small dispersion 
times imposed by the apparatus. 

- -  
(w’2 -v ’2  2 . 7,,/p; see Klebanoff 1954). It may therefore be supposed that the 
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5. The dispersion of discrete particles 
The dispersion of non-buoyant particles 

Before analysis similar to that of 5 2 can be applied to the dispersion of finite solid 
particles of radius ah it is necessary to establish the appropriate form of both the 
particle velocity and the particle diffusivity. First, the mean velocity of discrete 
particles in the flow in a circular pipe has been shown by Batchelor et al. (1955)- 
and in an extension of the investigation by Binnie & Phillips (1  958)-to be given 
accurately, provided a is less than about 0.15, by the discharge velocity obtained 
from the discharge due to the part of the pipe cross-section that is accessible to the 
particle centre. For larger particles (0.15 < a < 0.3) it was found to be more 
accurate to estimate the mean particle speed on the assumption that the velocity 
of the particle, when its centre is at position y,  is equal to the average of the mean 
fluid speed over a circle of radius ah centred at  y. Secondly, in the theory of the 
transport of suspended sediment (Rouse 1937, and improved by Hunt 1954), the 
assumption that very small discrete particles (a = 0.002) are dispersed at the 
same rate as fluid particles leads to good agreement with experiment. Thus we 
may expect that (9) will also apply to discrete particles, provided some account is 
taken of the finite size of the particle. The following discussion applies to pipe flow 
and to particles of size such that a < 0-15. 

The mean particle velocity u ( a )  has to be evaluated over the accessible area 
n( 1 - a)2 h2 as described above, so that 

- 
U*(a,w) = u-U(a)  = u-- 

and this takes the place of U* in (9). 
An estimate of the diffusivity e(a, w)  of a particle of finite size can be made by 

observing that in evaluating (9) the bulk of the contribution to D, arises from the 
region near the wall. In  this region the velocity profile is logarithmic, so that by 
(12) and (13), e = khu,w(l-w). Hence, 

(18) 
so that provided a is small the error in writing e(a, w)  = e(0, w)  is small (the 
expression does not apply near w = 0 or 1). In  fact the mean diffusivity 
e(0) = 4khu,/15, and the extra term in (1 8) represents a proportional error of 5a2/4. 

Observe also that in (8), although D, is defined in terms of the transport through 
an area nh2, the transport occurs only over an area n( 1 - a)2 h2, so that in (9) the 
upper terminal of the integral becomes 1 - a. 

Equation (9) can be written in the form 

e(a, w) + e(0, w)  -QkhuTa2, 

- 

Ill(.) = -2h2 wU*(a,w)A(a,w)dw, 1- (19) 
where ~ ( a ,  w) = low (ewl-1 [low w ~ * ( a ,  w) dw] dw, 

U*(a, w)  is given by (17) and e = e(0, w) = hu,w/f' by (12). The function f ( w )  
which defines U by means of (1 1) has been tabulated by Taylor (1954), and 
throughout the subsequent calculations we use his values. On performing the 
integration (17) and writing 

= u T [ f ( o )  -f('> w)l + u T [ f ( a )  -f(')]> (20) 
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we find A(a,w) = A(O,w) +~[J(a) - f (o) I f (o ,w) .  (21 1 

The final integration in (19) performed numerically for three values of a gave 
the values shown below. 

a 0 (Taylor) 0.04 0.10 0.15 
ma) 4.25 3.60 2.98 2-56 

4 ( 4 / h %  10.1 4-80 2.22 1-21 

I 1 I I 

0 0 1  0 2  0 3  
a 

FIQTJRE 6. Longitudinal dispersion of non-buoyant spheres of radius ah in a circular pipe. 
Experimental values from Batchelor et a2. (1955). 

These points are shown in figure 6, together with the experimental values 
obtained by Batchelor et al. (1955). The experimental points have a standard 
error of about 5 yo. The radii of the circles correspond to an error of 10 yo in D,. 
The agreement is quite good. The departure for large a is expected because of the 
neglect of the curvature of the diffusivity and velocity distributions. The mean 
error in neglecting the curvature of the diffusivity seems likely to be the greater, 
and is shown by (1  8) to be 11 % at a = 0.3. Thus, for a large, as opposed to the 
behaviour for a small, the principal effect arises through the diffusivity distribu- 
tion, and since D, is linearly related to l /e(a,  w) the neglect of the curvature of 
e(a, w) as shown by (18) leads to an underestimate of D,. This is the case for the 
experimental point at  a = 0.3. There is also significant departure for small values 
of a. Such an effect has also been observed in Vanoni’s (1946) experiments on the 
transport of suspended sediment. This effect is undoubtedly due to the sublayer 
near the wall. In  this region the tabulated values of f ( w )  and the computed 
diffusivity are not necessarily reliable. It should be noticed that the computation 
of D, requires four successive integrations, so that D, is sensitive to the form of 
f(w) and that the bulk of the contribution to D, arises near the wall, particularly 
for the smaller particles. The departure is therefore to be expected. 
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The dispersion of buoyant and heavy particles 
The above discussion applies to particles of density equal to that of the sur- 
rounding ffuid. In  view of the success of the discussion of Binnie & Phillips (1958) 
in evaluating the mean velocity of buoyant and heavy particles in a circular pipe 
by means of the hypothesis of sedimentation theory, i t  appears likely that ( 9 )  can 
again be easily modified to apply to heavy particles. For example, consider the 
flow in a channel. It is assumed that the probability density P(w) of the position 
of particles is determined by a balance between the transport due to a settling 
velocity Y and the turbulent transport, so that 

dP 
V P - e -  = 0.  

dY 

This is readily integrated by using (12)  and (13)  to give 

where /3 = Tr/ku, (Rouse 1937). The mean particle velocity o(a, p) is then 

o(a, P) = s,'-" ~ ( w )  Udw. (23)  

Equation ( 9 )  may now be used as before with U* = U -  Q(a,P) and e(B) = e(0) .  
A rough idea of the variation of D, with P can be obtained by considering the 

artificial example of a parabolic velocity distribution in a channel, in which the 
probability distribution is given by (22) ,  and the molecular diffusivity is a constant 
of value K. From (23) and ( 9 )  with a = 0 it is easily shown that 

W P )  = 7560/(. '' h2 (64 + Zip - 3 0 8 p  - 2 lop3 - 35p4). 

Dl(/3) rises by 0.55 yo above D(0) to a weak maximum at /3 = 1/30 and decreases 
relatively quickly to  zero near /3 = 0-5. This behaviour is typical only of the 
very small particles which normally utilize all the available velocity variation 
across the channel-unless inhibited by buoyancy-so that the convective effect 
is large and consequently so also is D,. 

For finite particles the available velocity variation is much reduced so that D, 
is less sensitive to buoyancy. Binnie & Phillips (1958) have already evaluated the 
expression corresponding to (23)  for a circular pipe and find 

q a ,  y )  = (1 - By2) q a ,  O), (25)  

where y = and B is given by their equation ( 8 ) .  For a = 0.1, B = 15.7. 
D,(a, y )  can now be evaluated from ( 9 )  and (25)  using Taylor's data forf(w). In  
figure 7, D,(cc, y) /hu,  is given for a = 0.1, together with the experimental values, 
of accuracy about f 10 yo s.D., obtained by Binnie & Phillips (1958). Theory 
predicts only a slow change of D, with y,  in agreement with experiment. The 
experiments are not sufficiently accurate to confirm the small theoretical decrease 
in D, with increasing IyI which would be more apparent for smaller values of a. 
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Thus, it is seen that (9) can be used whenever the velocity and diffusivity 
distributions of the dispersed entity are known, although the expression is only 
valid for large dispersal times. The principal departure from the simple theory 
for small particles occurs at low Reynolds numbers, owing to the effect of the 
viscous region near the walls. 

I 1 

Expt. 
\o 

- 8  0 
0 -  

0 

0 0 
8 

Present theory 
(a=0,1) 

I 1 
0.02 004 

IYI 
FIUURE 7. Longitudinal dispersion of buoyant and heavy particles in a circular pipe. 

Experimental values from Binnie & Phillips (1958). 
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